Abstract

Silver nanowires are used in many applications, ranging from transparent conductive layers to Raman substrates and sensors. Their performance often relies on their unique optical properties that emerge from localized surface plasmon resonances in the ultraviolet. To tailor the nanowire geometry for a specific application, a correct understanding of the relationship between the wire’s structure and its optical properties is therefore necessary. However, while the colloidal synthesis of silver nanowires typically leads to structures with pentagonally twinned geometries, their optical properties are often modeled assuming a cylindrical cross-section. Here we highlight the strengths and limitations of such an approximation by numerically calculating the optical and electrical response of pentagonally twinned silver nanowires and nanowire networks. We find that our accurate modeling is crucial to deduce structural information from experimentally measured extinction spectra of colloidally synthesized nanowire suspensions and to predict the performance of nanowire-based near-field sensors. On the contrary, the cylindrical approximation is fully capable of capturing the optical and electrical performance of nanowire networks used as transparent electrodes. Our results can help assess the quality of nanowire syntheses and guide in the design of optimized silver nanowire-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.