Abstract

This study reports the results of an ab initio electronic and optical calculation of alkaline-earth metal oxides (MgO, CaO, SrO and BaO) in the NaCl crystal structure using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory. The exchange-correlation potential is treated by the generalized gradient approximation within the Perdew et al scheme. Moreover, the Engel–Vosko GGA formalism is applied so as to optimize the corresponding potential for band structure calculations. The real and imaginary parts of the dielectric function ɛ( ω), the optical absorption coefficient I( ω), the reflectivity R( ω) and the energy loss function are calculated by random phase approximation (RPA). The calculated results show a qualitative agreement with the available experimental results in the sense that we can recognize some peaks qualitatively, those due to single particle transitions. Furthermore the interband transitions responsible for the structures in the spectra are specified. It is shown that the oxygen 2 p states and metal d states play the major role in optical transitions as initial and final states respectively. The effect of the spin–orbit coupling on the optical properties is also investigated and found to be quite small, especially in the low energy region. The dielectric constants are calculated and compared with the available theoretical and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call