Abstract

The optical constants and thickness of Al-doped ZnO (ZnO:Al(2.5 wt.%)) thin films prepared by high-frequency magnetron sputtering method are determined. ZnO:Al thin films are crystallized in the hexagonal structure from XRD studies. The optical constants and the bandgap of the films under study have been determined. Optical properties (refractive index [Formula: see text], absorption coefficient [Formula: see text], extinction coefficient [Formula: see text], dielectric functions [Formula: see text] and optical conductivity [Formula: see text]) of thin films and thickness [Formula: see text] can be determined from the transmission spectrum. The dispersion of the refractive index was explained using a single oscillator model. Single oscillator energy and dispersion energy are obtained from fitting. Optical parameters of the films were determined using the Cauchy, Sellmeier and Wemple models. The increasing value of dispersion parameter for polycrystalline thin films than for single crystals is observed. The fundamental absorption edge position (3.26 eV) in the transmittance spectrum of studied thin films corresponds to the values that are typical for ZnO:Al compound. No significant increase of the bandgap width was revealed by comparing ZnO:Al thin films with the known results of the optical studies of ZnO thin films. Possible reasons of such behavior were analyzed and the influence of bandgap increase on spectral behavior of optical functions are investigated. The material optical parameters such as normalized integrated transmission, zero and high-frequency dielectric constant, density of state effective mass ratio were also calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.