Abstract
The third harmonic generation (THG), linear and nonlinear optical absorption coefficients (OACs), and refractive index changes (RICs) are investigated in a Woods–Saxon quantum well (QW) modulated by the hydrostatic pressure and applied electric field. The effect of non-uniform aluminum doping (position-dependent effective mass (PDEM)) on the mass of the system is discussed, and further to explore the influence of PDEM on the nonlinear THG, OACs, and RICs of the Woods–Saxon QW. These nonlinear optical properties above are obtained using the compact-density matrix formalism. The electron states in a Woods–Saxon QW under the constant effective mass (CEM) and PDEM are calculated by solving the Schrödinger equation via the finite difference technique. The contributions from competing effects of the hydrostatic pressure and applied electric field to the nonlinear optical properties with CEM and PDEM are reported, as well as the comparison with each other. The observations reveal that the regulation of external fields and the influence of PDEM play an important role in the photoelectric properties of QW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.