Abstract

Optical elements embedded in an optical fiber can be used to shape and modulate the light transmitted within. We consistently observe, via Mueller polarimetry, that the optical properties of a femtosecond (fs) laser-created spherical cavity within a perfluorinated fiber exhibit predictable patterns. Specifically, linear birefringence is always induced at the periphery of the cavity, with its value showing a bell-shape distribution. The peak value of LB showed an increase correlating with the laser fluence and power, but its FWHM remains unchanged. Furthermore, it is important to highlight that when the cavity is disrupted, forming a channel to the fiber's surface, a negative LB is observed at the cavity's periphery, with a value reaching up to -0.4 rad. These optical phenomena may pique the interest of engineering and technical fields, potentially inspiring innovative approaches in optical fiber technology and its associated applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.