Abstract

We investigate the linear and nonlinear optical properties of a donor impurity confined by a two-dimensional pseudoharmonic potential both including harmonic dot and antidot potentials in the presence of a strong magnetic field. Calculations are made by using the perturbation method and the compact density-matrix approach within the effective-mass approximation. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different values of the chemical potential of the electron gas and the zero point of the pseudoharmonic potential. The results show that the optical properties of a donor impurity in a two-dimensional pseudoharmonic QD are strongly affected by the zero point of the pseudoharmonic potential, the chemical potential of the electron gas and the Coulomb interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.