Abstract

In the present work, six bismuth borate glass samples with chemical formula (75−x)B2O3–xBi2O3–10CaO–10Na2O–5Al2O3, (x = 0.0–25.0 mol%) have been manufactured. UV–visible spectral distributions for the investigated system were measured in the range of 250–850 nm. The optical absorption data showed the existence of allowed indirect transitions. The optical energy gap values ( $$E_{{\text{g}}}^{{{\text{opt}}.}}$$ ) via Tauc’s model vary from 3.39 to 2.45 eV. The complex dielectric constant ( $$\hat {\varepsilon }$$ ) was evaluated. All the optical parameters are found to be sensitive to the concentration of Bi2O3. Also, gamma photons’ attenuation features such as the mass attenuation coefficient (µ/ρ), gamma photon transmission function (I/Io), effective atomic number (Zeff), and half value thickness (HVT) for the investigated glass samples were estimated using MCNPX code and XCOM program in the range of 0.356–1.33 MeV. Replacement of B2O3 by Bi2O3 enhances the ability of glass samples to attenuate gamma photons. The results revealed that the studied glasses can be considered as candidate for optical fiber, devices, and gamma shieling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.