Abstract
Understanding the excited-state dynamics of nanomaterials is essential to their applications in photoenergy storage and conversion. This review summarizes recent progress in the excited-state dynamics of atomically precise gold (Au) nanoclusters (NCs). We first discuss the electronic structure and typical relaxation pathways of Au NCs from subpicoseconds to microseconds. Unlike plasmonic Au nanoparticles, in which collective electron excitation dominates, Au NCs show single-electron transitions and molecule-like exciton dynamics. The size-, shape-, structure-, and composition-dependent dynamics in Au NCs are further discussed in detail. For small-sized Au NCs, strong quantum confinement effects give rise to relaxation dynamics that is significantly dependent on atomic packing, shape, and heteroatom doping. For relatively larger-sized Au NCs, strong size dependence can be observed in exciton and electron dynamics. We also discuss the origin of coherent oscillations and their roles in excited-state relaxation. Finally, we provide our perspective on future directions in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.