Abstract

Optical properties of SnO 2 thin films in the 4–60 eV energy range are determined by reflection electron energy loss spectroscopy. Bulk and surface electron loss functions, real and imaginary parts of the dielectric function, refraction index, extinction and absorption coefficients are obtained from the analysis of the electron energy loss spectra. Electronic transitions are identified through the interpretation of the optical data. The samples (∼250–500 nm thick) were produced by ion beam-induced chemical vapor deposition. It is found that the compacity of the SnO 2 thin films affects their optical properties and therefore the relative intensity of the observed electronic transitions. The advantages of this method to determine optical properties of thin films are discussed. Inelastic mean free paths (6.2, 17 and 41 Å for electrons traveling in SnO 2 with kinetic energies of 300, 800 and 2000 eV, respectively) are obtained from the corresponding inelastic electron scattering cross-sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.