Abstract

Stratospheric aerosols significantly influence both the Earth's climate and the chemical composition of the stratosphere. Volcanic aerosols injected into the stratosphere, due to large volcanic eruptions, further enhance the effect on the climate and possibly lead to ozone depletion in the middle latitude stratosphere. The authors studies focus primarily on the change in the distribution of stratospheric aerosols before and after volcanic activity. The particle backscatter and other properties of stratospheric aerosols are studied to describe their variations. The Penn State Rayleigh/Raman lidar utilizes a Nd:YAG laser transmitting at both the doubled (532 nm) and tripled (355 nm) frequencies. The detector is equipped with separate channels to measure the low and high altitude signals from both the 532 nm and 355 nm as well as the Raman shifted returns due to N/sub 2/ and H/sub 2/O (660 nm and 607 nm). The LAMP lidar was first deployed on board the RV Polarstem during the LADIMAS campaign and has since been in operation in the United States. Scattering due to stratospheric aerosols from volcanic activity has been studied across different latitudes and over time. The effects due to Mt. Pinatubo (Philippines) and Mt. Hudson (Chile) eruptions have been compared. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.