Abstract

Optical tomography in biomedical imaging is a highly dynamic field in which non-invasive optical and computational techniques are combined to obtain a three dimensional representation of the specimen we are interested to image. Although at optical wavelengths scattering is the main obstacle to reach diffraction limited resolution, recently several studies have shown the possibility to image even objects fully hidden behind a turbid layer exploiting the information contained in the speckle autocorrelation via an iterative phase retrieval algorithm. In this work we explore the possibility of blind three dimensional reconstruction approach based on the Optical Projection Tomography principles, a widely used tool to image almost transparent model organism such as C. Elegans and D. Rerio. By using autocorrelation information rather than projections at each angle we prove, both numerically and experimentally, the possibility to perform exact three dimensional reconstructions via a specifically designed phase retrieval algorithm, extending the capability of the projection-based tomographic methods to image behind scattering curtains. The reconstruction scheme we propose is simple to implement, does not require post-processing data alignment and moreover can be trivially implemented in parallel to fully exploit the computing power offered by modern GPUs, further reducing the need for costly computational resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call