Abstract

We present a novel optical method for edge enhancement in color images based on the polarization properties of liquid-crystal displays (LCD). In principle, a LCD generates simultaneously two color-complementary, orthogonally polarized replicas of the digital image used as input. The currently viewed image in standard LCD monitors and cell phone's screens -which we will refer as the "positive image or true-color image"- is the one obtained by placing an analyzer in front of the LCD, in cross configuration to the back polarizer of the display. The orthogonally polarized replica of this image -the "negative image or complementary-color image"- is absorbed by the front polarizer. In order to generate the positive and negative replica with a slight displacement between them, we used a LCD monitor whose analyzer (originally a linear polarizer) was replaced by a calcite crystal acting as beam displacer. When both images are superimposed laterally displaced across the image plane, one obtains an image with enhanced first-order derivatives along a specific direction. The proposed technique works under incoherent illumination and does not require precise alignment, and thus, it could be potentially useful for processing large color images in real-time applications. Validation experiments are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.