Abstract

We experimentally investigate probe transmission signals (PTS), the four-wave mixing photonic band gap signal (FWM BGS), and the fluorescence signal (FLS) in an inverted Y-type four level atomic system. For the first time, we compare the FLS of the two ground-state hyperfine levels of Rb 85. In particular, the second-order and the fourth-order fluorescence signals perform dramatic dressing discrepancies under the two hyperfine levels. Moreover, we find that the dressing field has some dressing effects on three such types of signals. Therefore, we demonstrate that the characteristics of PTS, FWM BGS, and FLS can be controlled by frequency detunings, the powers or phases of the dressing field. Such research could have potential applications in optical diodes, amplifiers, and quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call