Abstract

Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied in the last years, a consistent description, i.e., starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In a previous paper we derived a theoretical optical potential from NN chiral potentials at fourth order (N3LO). In the present work we use NN chiral potentials at fifth order (N4LO), with the purpose to check the convergence and to assess the theoretical errors associated with the truncation of the chiral expansion in the construction of an optical potential. Methods: The optical potential is derived as the first-order term within the spectator expansion of the nonrelativistic multiple scattering theory and adopting the impulse approximation and the optimum factorization approximation. Results: The pp and np Wolfenstein amplitudes and the cross section, analyzing power, and spin rotation of elastic proton scattering from 16O, 12C, and 40Ca nuclei are presented at an incident proton energy of 200 MeV. The results obtained with different versions of chiral potentials at N4LO are compared. Conclusions: Our results indicate that convergence has been reached at N4LO. The agreement with the experimental data is comparable with the agreement obtained in our previous work. We confirm that building an optical potential within chiral perturbation theory is a promising approach for describing elastic proton-nucleus scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call