Abstract

In this work, we use the visualization method to study their intramolecular electric-magnetic interactions and reveal the physical mechanism of their electronic transition to explain the cause of the opposite ECD spectrum orientations. Azaphilone A and B are two chiral molecules, due to their differing chirality, the electronic circular dichroism (ECD) spectra of bromophilone A and B are very different at 431nm. Based on the two-step transition process, the charge-transfer characteristics of the corresponding two-photon excited states of the two chiral molecules are analysed in detail by calculating the photoinduced charge transfer and electron-hole coherence in the two-photon absorption (TPA) process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call