Abstract

The timing jitter, optical phase noise, and carrier-envelope offset (CEO) noise of passively mode-locked lasers are closely related. New key results concern analytical calculations of the quantum noise limits for optical phase noise and CEO noise. Earlier results for the optical phase noise of actively mode-locked lasers are generalized, particularly for application to passively mode-locked lasers. It is found, for example, that mode locking with slow absorbers can lead to optical linewidths far above the Schawlow–Townes limit. Furthermore, mode-locked lasers can at the same time have nearly quantum-limited timing jitter and a strong optical excess phase noise. A feedback timing stabilization via cavity length control can, depending on the situation, reduce or greatly increase the optical phase noise, while not affecting the CEO noise. Besides presenting such findings, the paper also tries to clarify some basic aspects of phase noise in mode-locked lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.