Abstract

Abstract It is known that an optical phase grating can be obtained when two mutually coherent laser beams overlap in a nematic liquid crystal. This is mainly due to director reorientation which contributes to a large optical non-linearity. It has been suggested by Herman and Serinko that a phase grating could be obtained in nematic liquid crystals if a D.C. field is used to bias it near the critical orientational Freedericksz transition. A homeotropic MBBA film biased by an electric field at 1 kHz has been studied. Two weak Ar+ laser beams were incident normally to the film with a small intersection angle (≊0·4˚). Using the picture of a director reorientation mechanism and a degenerate four wave mixing scheme, we have obtained the dependence of the diffraction beam intensity on that of the incident beam and the strength of the biased electric field. The theoretical prediction and experimental results both show that the phase grating diffraction can be dramatically enhanced by the coupling of the electric ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.