Abstract

A mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The composite film was characterized by x-ray diffraction, transmission electron microscopy, UV-Vis, photoluminescence (PL) spectra, and laser performance, and the results confirmed the existence of dyes in the channels of the silica film. A blue-shift and fluorescence property in the PL spectrum was observed from the composite film compared with that of dye molecules in C₂H₅OH solution. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=355 nm by a Nd:YAG pulsed laser. A narrower, higher peak was observed in emission spectra from the mesostructured composite silica film compared with the PL spectrum of dye in C₂H₅OH solution. There is a substantial reduction in the full width at half-maximum of the emitting light, which results in peaks with linewidths of 26 nm or more. This collapse of the emission spectrum is one of the signatures of the presence of amplified spontaneous emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call