Abstract

We propose a low-cost technique for simultaneous and independent optical signal-to-noise ratio (OSNR), chromatic dispersion (CD), and polarization-mode dispersion (PMD) monitoring in 40/56-Gb/s return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) and 40-Gb/s RZ-DPSK systems, using artificial neural networks (ANN) trained with empirical moments of asynchronously sampled signal amplitudes. The proposed technique employs an extremely simple hardware and digital signal processing to enable multi-impairment monitoring at different data rates and for various modulation formats without necessitating hardware changes. Simulation results demonstrate wide dynamic ranges and good monitoring accuracies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.