Abstract

Ozone is a green house gas. Ozone absorption cross sections have been reported with discrepancies and inconsiste ncies. In this paper, simultaneous effects of the optical path length and temperature variations on ozone gas absorption cross sections are investigated at different wavelengths. HITRAN 2012, the latest available line list on spectralcalc.com simulator, is used in this study to simulate ozone gas absorption cross sections in relation to the simultaneous effects of the optical path length and temperature at the wavelengths of 603 nm and 575 nm. Results obtained for gas cells with the optical path length from 10 cm to 120 cm show that the decrease in temperatures from 313 K to 103 K results in the increase in ozone gas absorption cross sections. At wavelengths of 603 nm and 575 nm, the percentage increase of ozone gas absorption cross sections is 1.22% and 0.71%, respectively. Results obtained in this study show that in the visible spectrum, at co nstant pressure, ozone gas absorption cross sections are dependent on the temperature and wavelength but do not depend on the optical path length. Analysis in this work addresses discrepancies in ozone gas absorption cross sections in relation to the temperature in the visible spectrum; thus, the results can be applied to get optimal configuration of high accuracy ozone gas sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call