Abstract

We report on optical parametric oscillators (OPOs) based on large aperture periodically poled KTiOPO4 (PPKTP) and RbTiOAsO4 (PPRTA) pumped with high pulse energy and high average power Q-switched solid-state lasers. The OPOs were pumped with 1064-nm pulses of a diode-pumped Nd:YVO4 laser at 20 kHz repetition rate. The emitted signal wavelengths were 1.72 μm and 1.58 μm and the idler wavelengths were 2.79 μm and 3.26 μm, respectively. Pumping the PPKTP OPO with 7.2 W and the PPRTA OPO with 8 W average power, 2 W and 1.3 W total OPO output powers were generated. Two-dimensional measurements of the total OPO output power, the signal wavelength and the signal bandwidth in dependence on the crystal location indicated a good uniformity of the quasiphasematching structure over the entire 3-mm-thick crystals. This allowed pumping with larger pump beams and therefore with pulse energies of tens of millijoules. Pumping with different flash-lamp-pumped lasers, good OPO performance and high output pulse energies could be achieved for all pump lasers. Maximum input pulse energies of 56 mJ gave output pulse energies of as much as 18 mJ. The temperature tuning behaviors of both OPOs were measured, showing excellent agreement with calculated temperature tuning curves. New equations for temperature dispersion in RTA are presented. These results show that large-aperture PPKTP and PPRTA crystals are well suited for tunable nanosecond OPO operation with multi-watt average pump power and several tens of millijoules pump pulse energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call