Abstract

The optically induced spin polarization in (Cd,Mn)Te/(Cd,Mn,Mg)Te diluted-magnetic-semiconductor quantum wells is investigated by means of picosecond pump-probe Kerr rotation. At 1.8 K temperature, additionally to the oscillatory signals from photoexcited electrons and Manganese spins precessing about an external magnetic field, a surprisingly long-lived (up to 60 ns) nonoscillating spin polarization is detected. This polarization is related to optical orientation of equilibrium magnetic polarons involving resident holes. The suggested mechanism for the optical orientation of the equilibrium magnetic polarons indicates that the detected polaron dynamics originates from unexcited magnetic polarons. The polaron spin dynamics is controlled by the anisotropic spin structure of the heavy-hole resulting in a freezing of the polaron magnetic moment in one of the two stable states oriented along the structure growth axis. Spin relaxation between these states is prohibited by a potential barrier, which depends on temperature and magnetic field. The magnetic polaron relaxation is accelerated with increasing temperature and in magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.