Abstract

We report on optical orientation of electrons in n-doped InAs/GaAs quantum dots. Under non-resonant cw optical pumping, we measure a negative circular polarization of the luminescence of charged excitons (or trions) at low temperature (T=10 K) . The dynamics of the recombination and of the circular polarization is studied by time-resolved spectroscopy. We discuss a simple theoretical model for the trion relaxation, that accounts for this remarkable polarization reversal. The interpretation relies on the bypass of Pauli blocking allowed by the anisotropic electron–hole exchange. Eventually, the spin relaxation time of doping electrons trapped in quantum dots is measured by a non-resonant pump–probe experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.