Abstract

The degenerate-four-wave-mixing, ultrafast optical pump-probe reflection, and scattering techniques were applied to study the nonlinear optical properties of VO2 in insulating and metallic phases. The third-order nonlinear susceptibility was measured for thin films at different excitation regimes. The VO2 recovery dynamics after light-induced phase transition (PT) shows strong sensitivity to optical pump energy and could be governed by pure electronic relaxation excluding thermal contribution at sufficiently low excitation. Increased light scattering during thermally and light-induced PT demonstrates significant VO2 heterogeneity which appears as a coexistence of insulating and metallic phases accompanied by fluctuations of dielectric constants. Different desorption activity was monitored for insulating and metallic VO2 thin solid films under femtosecond optical excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call