Abstract
We use machine learning (simulated annealing) to design plasmonic nanoapertures that function as optical nanotweezers. The nanoapertures have irregular shapes that are chosen by our algorithm. We present electromagnetic simulations that show that these produce stronger field enhancements and extraction energies than nanoapertures comprising double nanoholes with the same gap geometry. We show that performance is further improved by etching one or more rings into the gold surrounding the nanoaperture. We provide a direct comparison between our design and work that is representative of the state of the art in plasmonic nanotweezers at the time of writing. Lastly, we provide experimental results that compare our algorithm-designed structure to a double nanohole design
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.