Abstract

A silicon cross-coupled double-ring resonator system is proposed and fabricated for an optical multistability application, which consists of a racetrack resonator, a cross-coupled microring and a feedback U-shape waveguide. Transfer matrix method and rigorous simulation is used to analyze the static property. The measured device transmission spectrum can be modulated by applying a voltage to the microheater above the feedback waveguide, coinciding well with the theoretical expectation. With increase and decrease the input light power, optical multistability can be observed, which may be explained with consideration of the two-photon absorption and Kerr nonlinear effect. The presented device shows a favorable design freedom and energy consumption, which could be widely applied in optical logic gates and all-optical signal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call