Abstract

Optical monitoring of nonequilibrium carrier dynamics was performed in freestanding GaN. Four-wave mixing kinetics directly provided carrier lifetime of 5.4ns in the layer, while complementary measurements by photoluminescence technique revealed the fast transients with subnanosecond decay time. Numerical modeling of photoluminescence decay taking into account the carrier spatial-temporal dynamics allowed us to attribute an origin of the fast photoluminescence transients to carrier diffusion to the bulk and to reabsorption of the backward emission. The studies demonstrated carrier diffusion limited applicability of the time-resolved photoluminescence technique for carrier lifetime measurements in a high quality thick III-nitride layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.