Abstract

We report electroabsorption modulation of light at around 1550 nm in a unipolar InGaAlAs optical waveguide containing an InGaAs/AlAs double-barrier resonant tunneling diode (RTD). The RTD peak-to-valley transition increases the electric field across the waveguide, which shifts the core material absorption band edge to longer wavelengths via the Franz–Keldysh effect, thus changing the light-guiding characteristics of the waveguide. Low-frequency characterization of a device shows modulation up to 28 dB at 1565 nm. When dc biased close to the negative differential conductance region, the RTD optical waveguide behaves as an electroabsorption modulator integrated with a wide bandwidth electrical amplifier, offering a potential advantage over conventional pn modulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.