Abstract

A previously published s-wave scattering function for 1--450 keV neutrons on /sup 60/Ni is averaged for comparison to the scattering from an optical model potential. The scattering length R' is found to be 5.5 +- 0.03 fm at 225 keV. Averaging of the scattering function (both by integration with a normalized weight function and by use of an analytical approximation) produces shape elastic and compound nucleus cross sections which are then fitted by adjustment of the real and imaginary well depths in both spherical and vibrational optical models with a Woods-Saxon real well (r/sub 0/ = 1.21 fm, a/sub 0/ = 0.66 fm) and a surface derivative imaginary well (r/sub D/ = 1.21 fm, a/sub D/ = 0.48 fm). The fitted depths are V/sub 0/ = 48 MeV and W/sub D/ = 29 MeV for the spherical potentials, and V/sub 0/ = 50 MeV and W/sub D/ = 24 MeV for the vibrational potentials. Uncertainties are +- 5 MeV. From an upper limit on the p-wave strength function the W/sub D/ for p waves is found to be 1.5 MeV for the vibrational model. Thus, the imaginary potential is l dependent for the assumed geometry. For s waves the vibrationalmore » model gives a good fit also with W/sub D/ = 1.5 MeV and V/sub 0/ = 54.4 MeV; however, with that V/sub 0/ the 2p states are bound too deeply in /sup 61/Ni and the 3s size resonance is predicted at too low a mass.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.