Abstract
Quasielastic (p, n) differential cross sections have been measured for 29 nuclei ranging from 9Be to 208Pb at an energy of 22.8 MeV in approximately 7.5° steps from 10° to 152°. The results have been analysed with a distorted-wave Born approximation in terms of the generalized optical model due to Lane. Starting with a complex isospin interaction form factor, U 1, deduced from the Becchetti-Greenlees global set of proton optical parameters, the shape of the surface-peaked, imaginary part of U 1 was varied until good fits to the data were obtained. The shape of the real part of U 1 and the ratio of the real to imaginary well depths were kept fixed at the Becchetti-Greenlees values. The resulting best-fit form factors had overall strengths 20–30 % less than the Becchetti-Greenlees value. Further, the resulting imaginary part of U 1 was found to peak at a decreasing radius relative to the real part of U 1 with an increasing width as A increased. A smoothed parameterization of the best-fit U 1 is given for all nuclei with A > 40. The individual best-fit U 1 is used to generate self-consistent neutron optical potentials from the Becchetti-Greenlees proton optical potentials as prescribed by the Lane model. Neutron elastic scattering angular distributions and reaction cross sections predicted by these self-consistent potentials are in good agreement with observed neutron scattering data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.