Abstract

Optical microcavities have a wide range of applications and are used for fundamental studies, such as strong-coupling cavity quantum electrodynamics, enhancement and suppression of spontaneous emission, novel light sources, and dynamic filters in optical communication (Vahala, 2003). As a single-mode, ultralow threshold lasers, dielectric microdisks and microspheres have been studied, since they can support very high-Q whispering-gallery modes (WGMs) (McCall et al., 1992). Basically, strong light confinement of the WGMs in the dielectric microcavities is given by total internal reflection and only small evanescent leakage due to boundary curvature is a possible way of light loss. In a circular microcavity, the WGMs are characterized by two good mode/ quantum number (m,l), m is the angular momentum quantum number and l the radial quantum number. Light emission of WGMs is isotropic due to the rotational symmetry of the circle cavity, which is undesired when considered as a light source for device applications. In their seminal paper (Nockel & Stone, 1997), Nockel and Stone have pointed out that a deformation of the cavity leads to partially chaotic ray dynamics and highly anisotropic emission. Optical modes in deformed microcavities do not have good mode/ quantum numbers due to absence of rotational symmetry or non-integrability of system. It is also known that the deformed microcavity has rich physics related to quantum chaos, such as chaos-assisted tunnelling, dynamical localization. Only drawback of deforming microcavity would be degradation of Q-factor, but for a slight deformation the degree of degradation is not severe due to the existence of the Kolmogorov-Arnold-Moser (KAM) invariant tori/ curves preventing ray diffusion toward the critical angle of total internal reflection from which rays can escape from the microcavity. Some of subsequent works have focused on search for optimal cavity shape supporting optical modes with good emission directionality such as unidirectional emission and directional emission with narrower divergence (Chern et al., 2003; Shang et al., 2008). Other works on microcavities have treated fundamental quantum chaotic features such as scarring phenomena, chaos-assisted tunnelling etc. (Lee, S.-B. et al., 2002; Podolskiy & Narimanov, 2005) In principle, any microcavity with broken rotation symmetry has directional emission. For a very slight deformation, the emission is the result of tunnelling process, and the emission comes out tangentially at the boundary points with the highest curvature. When the deformation increases enough, the emission directionality is well explained by an ensemble Source: Advances in Optical and Photonic Devices, Book edited by: Ki Young Kim, ISBN 978-953-7619-76-3, pp. 352, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call