Abstract

Optical biosensors for the detection of toxic species in aqueous media were developed via the encapsulation of microalgae in sol-gel matrices. In a first step, the effect of cadmium(II), lead(II), and anthracene on the chlorophyll a fluorescence intensity of Anabaena flos-aquae, Chlorella vulgaris, and Euglena gracilis microalgae in suspension was studied. Complementary ATP-metry measurements demonstrated a direct relationship between optical response and pollutant toxicity, in a cell- and dose-dependent manner. In a second step, microalgae were successfully encapsulated in silicate-colloidal silica nanocomposite matrices. However, a complete loss of cell response to pollutant addition was observed, despite the preservation of cell viability. Introduction of a low amount (5mol%) of amine- or ethyl-bearing silanes in the matrix formulation allowed the recovery of the sensing capacity of the immobilized microalgae, without impacting on the response time (30s). Porosimetry and 29Si solid-state NMR spectroscopy showed that the organic moieties are fully integrated into the inorganic network, tuning the ability of the target pollutant to diffuse and reach the encapsulated algae. This versatile strategy could be useful for the easy and fast assessment of contamination levels in polluted waters. Graphical Abstract Microalgal biosensors for aqueous contaminants using organically doped silica as cellular hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.