Abstract

Two-dimensional detection of ultrasonic waves is based on pressure-induced changes of optical reflectance at a glass–liquid interface, imaged with a time-gated video camera. The method is used to record optoacoustic waves generated after irradiation of optically absorbing targets with 6 ns long laser pulses. Measurements of absolute pressure values with high temporal and spatial resolution (in the range of 10 ns and 10 μm, respectively) is demonstrated. The sensitivity is varied between 0.19% and 0.81% gray level modulation per bar. The detector plane is optically transparent, making it possible to irradiate the sample through the detector without disturbing the acoustic measurement. Two-dimensional recording of ultrasonic waves is ideally suited for the analysis of acoustic emission from small sources and for optoacoustic imaging of optical absorption differences in an opaque material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.