Abstract

Photodynamic inactivation is a new promising approach to treat bacterial infections. Usually, the evaluation of the efficacy of this method is done through time-consuming and labor-intensive microbiological test methods. This paper describes the development and implementation of an optical method to evaluate the photodynamic inactivation of bacteria based on non-invasive diffuse reflectance measurements. Five Staphylococcus aureus cultures and 15 mice have been used in this study. A skin lesion was created on the back of all animals, and it was contaminated with S. aureus (5.16 ± 0.013 log CFU/ml). Toluidine Blue O (c = 8.67 × 10 (- 3) M) has been used as a photosensitiser agent. The bacterial cultures and animals were exposed to laser radiation (λ = 635nm, P = 15mW, DE = 8.654J/cm(2)) for 20min. The photodynamic inactivation of bacteria was monitored by acquiring the wounds' reflection spectra at different time points and by microbiological exams on the bioptical material. The good correlation between the diffuse reflectance and colony-forming units demonstrates the value of this optical method based on diffuse reflectance measurements as a rapid technique to monitor photodynamic bacterial inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.