Abstract

This study developed a pH-dependent mesosensor for the optical and selective removal of Hg2+ ions from drinking water and physiological fluids. The fine-tuned surface patterning of the mesoscopic solid aluminosilica scaffolding architectures, which was achieved using a dispersible active agent such as a cationic surfactant, resulted in the dense immobilization of addressable diphenylcarbazide chelating agent. These mesosensor responses can be triggered by the target species and can transduce measurable optical signals under synergistic pH conditions, thus enabling the binding of Fe3+ and Hg2+ metals into a hydrophobic chelating pocket to be simulated. Results verified the one-step removal and optical adsorption efficiency of ultra-trace, wide-range (0.001mg dm−3 to 2.0mg dm−3) concentrations of Fe3+ and Hg2+ ions into the interior pore surface coverage of the DPC-modified mesosensor from drinking water. Importantly, the mesosensor can be repeatedly recycled without damaging the unique mesostructures. Furthermore, the hemolysis test of Hg2+ ion toxicity in red blood cells (RBCs) and the counteraction effect of the phosphatidylserine (Ptd-L-Ser) receptor exposure of RBCs were also investigated in a physiological system such as human blood. Results indicated that the strong binding site-metal interaction enabled the remarkably selective removal of Hg2+ ions from physiological fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.