Abstract
Abstract Exploring optical memory functions in nonvolatile organic field-effect transistor (OFET) memories with top-gate/bottom-contact (TG/BC) configurations can offer effective routes for developing printable, high-density organic memory circuits capable of multi-level data storage. Here, we use a solution process to fabricate TG/BC OFET devices with organic floating-gate structures and investigate their memory characteristics under light illumination. A solution-processable organic composite of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and poly(methylmethacrylate) is employed to self-organize organic floating-gate structures on a solution-processed semiconductor layer composed of poly(3-hexylthiophene) (P3HT). The floating-gate OFET devices programmed with blue, green, and red light exhibit large threshold voltage (Vth) shifts of approximately 30 V and stable charge retention characteristics even under light illumination. The devices also exhibit high sensitivity to incident light during programming, and the degree of Vth shift and the on-state current can be tuned using light and programming voltage to facilitate distinct storage and readout of multi-level data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.