Abstract

We report measurements of all the material constants necessary to fully characterize barium borate as a nonlinear optical material. All data was taken on crystals supplied by Professor Chuangtien Chen, Fuzhou, People’s Republic of China. We have determined the crystal structure, the optical absorption, the refractive indices from the UV to the near IR, the thermo-optic coefficients, the nonlinear optical or coefficients, the resistance to laser damage, the elastic constants, the thermal expansion, thermal conductivity and dielectric constants, and the fracture toughness. This data is used to evaluate barium borate for a variety of applications. We find that, in general, barium borate has a low acceptance angle, and that despite its higher optical nonlinearity, it is therefore not significantly more efficient than other commonly available materials, except in the UV below 250 nm. On the other hand, it has a high damage threshold, it is physically robust, it has good UV and IR transparency, and it has excellent average power capability. It permits deep UV generation, and has great potential for generating tunable visible and IR light as an optical parametric amplifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.