Abstract

Bacterial adhesion to host tissue is an initial step in the infectious process. <i>Staphylococcus aureus</i>, a major human pathogen, has covalently anchored cell surface adhesins called microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) which mediate specific adhesion to extracellular matrix (ECM) molecules. Understanding MSCRAMM binding is potentially useful in developing effective antibacterial drugs. In this study, optical tweezers were used in conjunction with a quadrant photodetector to measure adhesive forces between MSCRAMMs and surfaces coated with the ECM molecule fibronectin. Using a piezoelectrically driven stage, a fibronectin-coated microsphere adherent to a coverslip was brought into contact with a cell optically trapped at 830 nm. The microsphere was subsequently moved away from the cell, and a quadrant photodiode monitored the cell displacement from the trap center during the detachment process. The photodetector voltage signals were subsequently converted into the adhesive forces between MSCRAMMs and fibronectin based on a calibration using Stoke’s law for viscous drag. Optical detection of the trapped bead displacement allowed us to study both the dynamics of the detachment process and observe the effects of various loading rates. This technique can be extended to identify the contributions of various MSCRAMM domains to adhesion in order to develop new methods of treating infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.