Abstract

The buckling behavior and failure mode of a composite panel stiffened by I-shaped stringers under in-plane shear is studied using digital fringe projection profilometry. The basic principles of the dynamic phase-shifting technique, multi-frequency phase-unwrapping technique and inverse-phase technique for nonlinear error compensation are introduced. Multi-frequency fringe projection profilometry was used to monitor and measure the change in the morphology of a discontinuous surface of the stiffened composite panel during in-plane shearing. Meanwhile, the strain history of multiple points on the skin was obtained using strain rosettes. The buckling mode and deflection of the panel at different moments were analyzed and compared with those obtained using the finite element method. The experimental results validated the FEM analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call