Abstract
An optical measurement system was developed to investigate gas-liquid two-phase flow characteristics in a circular microchannel of 100 μ m diameter. By using multiple optical fibers and infrared photodiodes, void fraction, gas and liquid plug lengths, and their velocities were measured successfully. The probes responded to the passage of gas and liquid phases through the microchannel adequately so that the time-average void fraction could be obtained from the time fraction for each phase. Also, by cross-correlating the signals from two neighboring probes, the interface velocity representing gas plug velocity or ring-film propagation velocity depending on the flow pattern could be computed. Within the ranges of superficial gas and liquid velocities covered in the experiments (j L = 0.2∼0.4 m/s and j G = 0∼5 m/s), the gas plug length was found to increase with the increasing superficial gas velocity, but the liquid plug length was found to decrease sharply as the superficial gas velocity was increased; thus, the total length of the gas-liquid plug unit decreased with the superficial gas velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.