Abstract

We have studied the spatiotemporal pattern of blebbistatin-induced anomalous electrical activities in isolated rat atrial preparations using the optical mapping of excitation spread. Atrial preparations including the right or left auricle were dissected from adult rat hearts. Each preparation was then stained with a fast merocyanine-rhodanine voltage-sensitive dye (NK2761). Using a multi-element (16 x 16) photodiode array, we assessed the spread of excitation optically by timing the initiation of the action potential-related extrinsic absorption changes. The contraction-related optical signals were suppressed by adding (S)-(-)-blebbistatin (10-100 miocroM) to the bathing solution. Blebbistatin had an effective delay time of about 1.5 h following its application, at which time anomalous electrical activities occurred. These took the form of triggered activities and rhythmical spontaneous excitations. We optically mapped the spatiotemporal patterns of the excitation spread during these anomalous electrical activities. When the triggered activities occurred, the site of ectopic focus, where the triggered action potential first appeared, and the area of excitation spread varied in every event. When the rhythmical spontaneous excitations occurred, the excitation spread from the anomalous pacemaker and, occasionally, their spatial shift was observed. In addition, the combination pattern of the spontaneous excitations and triggered activities was also observed. We suggest that these phenomena are due to the disturbed intracellular calcium dynamics induced by the application of blebbistatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.