Abstract

Optical trapping and manipulation of dielectric particles on the surface of a dielectric prism using TE plane waves are demonstrated in the Rayleigh scattering regime. The interference of four counter propagating evanescent waves forms a standing wave on the planar surface and the trapping is realized based on the gradient force. Two mirrors are used to manipulate the trapped particles in any arbitrary direction on the surface. The required trapping potential and the irradiance within the Rayleigh scattering regime are computed. A hypothesis is developed to pull the particles at a maximum force toward the surface for further demonstration of this configuration. The standing wave on the surface of the prism using TE Gaussian beams are demonstrated for practical illustration of this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.