Abstract

Micromanipulation has received increasing attention from robotics researchers due to its wide applications in the manipulation of microobjects like biological cells and Bio-MEMS components. The demand for accurate and precise manipulation of microobjects opens up new challenges in automation of micromanipulation tasks. In this paper, we present a concurrent framework for optical manipulation of multiple groups of microobjects using robotic tweezers. The proposed framework is based on laser-stage coordination control and consists of two concurrent subschemes: 1) local coordination achieved by asynchronous manipulation of multiple groups of microobjects using laser beams and 2) global coordination achieved by manipulation of whole groups using a motorized stage. Unlike existing methods that are limited to the manipulation of a single microobject or a single group of microobjects, the proposed method considers concurrent laser-stage coordination of multiple groups of microobjects, which enhances the capability and flexibility in micromanipulation tasks. In addition, we introduce a unified social interaction function to achieve various cellular behaviors. A mathematical formulation is provided and stability analysis is presented. Using the proposed method, we are able to manipulate multiple groups of microobjects to construct time-varying microformations. Experimental results are presented to illustrate the performance of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.