Abstract
Since Ashkin's pioneering work, optical tweezers have become an essential tool to immobilize and manipulate microscale and nanoscale objects. The use of optical tweezers is key for a variety of applications, including single-molecule spectroscopy, colloidal dynamics, tailored particle assembly, protein isolation, high-resolution surface studies, controlled investigation of biological processes, and surface-enhanced spectroscopy. In recent years, optical trapping of individual sub-100-nm objects has got the attention of the scientific community. In particular, the three-dimensional manipulation of single lanthanide-doped luminescent nanoparticles is of great interest due to the sensitivity of their luminescent properties to environmental conditions. Nevertheless, it is really challenging to trap and manipulate single lanthanide-doped nanoparticles due to the weak optical forces achieved with conventional optical trapping strategies. This limitation is caused, firstly, by the diffraction limit in the focusing of the trapping light and, secondly, by the Brownian motion of the trapped object. In this work, we summarize recent experimental approaches to increase the optical forces in the manipulation of lanthanide-doped nanoparticles, focusing our attention on their surface modification and providing a critical review of the state of the art and future prospects.
Highlights
Optical trapping (OT) of nanoparticles (NPs) by the forces exerted by a tightly focused laser beam has allowed innumerable advances in the study of single molecules and cells and the characterization of photonic nanomaterials
Optical manipulation is based on the optical forces that a tightly focused laser beam can exert on a particle thanks to the interaction between the electromagnetic field of the light and matter
Lanthanide-doped nanoparticles present unique, environmentsensitive, selective, and bio-compatible spectroscopic characteristics that stand out among other dielectric luminescent nanoparticles. They are ideal for optical trapping, a non-invasive and versatile tool used to manipulate small objects
Summary
Optical trapping (OT) of nanoparticles (NPs) by the forces exerted by a tightly focused laser beam has allowed innumerable advances in the study of single molecules and cells and the characterization of photonic nanomaterials. Optical manipulation is based on the optical forces that a tightly focused laser beam can exert on a particle thanks to the interaction between the electromagnetic field of the light and matter. As explained in section Optical Trapping: Fundamentals, it is challenging to manipulate NPs with conventional OT strategies as the optical forces decrease with the particle volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.