Abstract

When a stationary absorptive dielectric cylinder suspended in a gas (such as air) is illuminated by an axisymmetric wave field (such as plane waves), the transverse (T) photophoretic asymmetry factor (PAF) vanishes as required by geometrical symmetry [Appl. Opt.60, 7937 (2021) APOPAI0003-693510.1364/AO.435306]. Counter-intuitively, when the cylinder possesses an initial angular velocity Ω0 with a sufficiently small acceleration and spins around its main axis in the illuminating field of axisymmetric plane waves, it is shown here that the T-PAF (which is directly proportional to the T-photophoretic force vector component) is quantifiable, in analogy with the Magnus effect in hydrodynamics where a force perpendicular to the axis of the cylinder and to the propagation direction arises. Based upon the instantaneous rest-frame theory and the partial-wave series expansion method in cylindrical coordinates, the internal electric field of the spinning absorptive dielectric cylinder is determined and utilized to compute both the longitudinal (L) and T-PAFs. Particular emphases are given on the size parameter of the cylinder, its angular rotation, the light absorption inside its core material and the polarization (TM or TE) of the incident plane waves. The dimensionless intensity function (DIF) is also computed, which reveals quantitative information on the heated portions within the internal absorptive core material of the cylinder. Numerical computations illustrate the analysis and explicate the behaviors of the DIF and the L- and T-PAFs, which predict the emergence of the forward, neutral, and reverse optical/electromagnetic Magnus effect in the photophoresis of an absorptive dielectric cylinder and related applications in spin optics, optical tweezers, optical manipulation of elongated objects, and radiative transfer research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call