Abstract

Linearly-polarized magnetic dipole (MD) scattering as intense as Rayleigh scattering is reported in transparent garnet crystals and fused quartz through a magneto-electric interaction at the molecular level. Radiation patterns in quartz show the strongest optical magnetization relative to electric polarization ever reported. As shown in an accompanying paper, quantitative agreement is achieved with a strong-field, fully-quantized theory of magneto-electric (M-E) interactions in molecular media. The conclusion is reached that magnetic torque enables 2-photon resonance in an EH* process that excites molecular librations and accounts for the observed upper limit on magnetization. Second-order M-E dynamics can also account for unpolarized scattering from high-frequency librations previously ascribed to first-order collision-induced or third-order, all-electric processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.