Abstract

In this review we describe the challenges and opportunities for creating magnetically active metamaterials in the optical part of the spectrum. The emphasis is on the sub-wavelength periodic metamaterials whose unit cell is much smaller than the optical wavelength. The conceptual differences between microwave and optical metamaterials are demonstrated. We also describe several theoretical techniques used for calculating the effective parameters of plasmonic metamaterials: the effective dielectric permittivity ϵ eff ( ω ) and magnetic permeability μ eff ( ω ) . Several examples of negative permittivity and negative permeability plasmonic metamaterials are used to illustrate the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.