Abstract

We report on the generation of a highly coherent broadband optical linear frequency sweep (LFS) using mode-spacing swept comb and multi-loop composite optical phase-locked loop (OPLL). We exploit a specially designed agile opto-electronic frequency comb as a sweeping reference, whose mode-spacing is capable of arbitrary frequency sweep while preserving a stable phase and power distribution per mode. By locking a continuous-wave (CW) laser to any of its modes using composite OPLL with a large loop bandwidth, it allows the extraction of the optical LFS at high-order modes in a coherent manner with a multiplied sweep range and rate. With such capability, only intermediate frequency LFS with smaller bandwidth is required to yield a broadband LFS while inheriting the coherence and precision from the comb. We achieve optical LFS of 60 GHz at 6 THz/s sweep rate with a nine-folded sweep bandwidth of the driving signal. Fourier transform-limited spatial resolution at more than 80 times of the intrinsic coherence length of the CW laser is demonstrated in an OFMCW interferometry, verifying the high coherence with more than 4 orders of magnitude improvement in spatial resolution. The characteristics in terms of agility, coherence, and precision are discussed together with the potential limitations. The proposed method is capable of generating arbitrary frequency-modulated optical waveforms with a multiplied bandwidth, showing attractive potential in future metrology applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.