Abstract
An extension of the recently introduced nonlinear finite-difference time-domain technique [Opt. Lett.21, 1138 (1996)] for the study of electromagnetic wave propagation in a non-linear Kerr medium to include absorption is presented. The optical limiting and switching of short pulses by use of a nonlinear quarter-wave reflector (a one-dimensional photonic bandgap structure) with a defect is studied. Comparison with an optical limiter and with an optical switch with a perfect nonlinear quarter-wave reflector shows that introducing a defect can improve the performance of these devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.