Abstract

We demonstrate a robust method for the efficient optically levitated loading of ultracold Cs atoms in a crossed dipole trap. When preparing a large number of atomic samples, a large-volume crossed dipole trap is required to form a shallow but very efficient loading potential. The scattering force coming from a red near-off-resonance laser is utilized to precisely compensate for the destructive gravitational force of the atoms, making it a promising method for loading and trapping ∼ atoms in a pure optical trap. The optimum levitation laser intensity is ∼177 W cm−2 with a detuning of −25.0 GHz. The dependence of the variation in the number of atoms loaded and trapped in the optically levitated dipole trap on the intensity and detuning of the levitated laser is in good agreement with theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.